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Abstract
It is known that many physical systems which do not exhibit deterministic
chaos when treated classically may exhibit such behaviour if treated from
the quantum mechanics point of view. In this paper, we will show that an
annihilation operator of the unforced quantum harmonic oscillator exhibits
distributional chaos as introduced in B Schweizer and J Smı́tal (1994 Trans.
Am. Math. Soc. 344 737–54). Our approach strengthens previous results on
chaos in this model and provides a very powerful tool to measure chaos in other
(quantum or classical) models.

PACS numbers: 05.45.−a, 03.65.Ta

In classical mechanics, we work with ‘exact’ trajectories of points. However, if we follow
Heisenberg’s uncertainty principle, such trajectories cannot be measured. This is why
dynamics is described by the wavefunction obeying some deterministic equation of motion
(e.g. Schrödinger equation) in quantum mechanics. In this approach, we work with probability
distributions of trajectories rather than with ordinary trajectories themselves. It should be noted
that in contrast to stochastic dynamical systems, wavefunctions do not represent distributions of
probability (do not have to be positive); however, such distributions may be exactly calculated
from wavefunctions (i.e. quantity |φ(x, t)|2 measures the probability of finding the particle
at the position x in time t). It is the phenomena known from the literature that the dynamics
of a given system and the dynamics of its probabilistic analogue (e.g. given by the associate
Koopman operator acting on a set of densities) may rapidly differ. In fact, it may happen
that systems with complicated trajectories will force a very regular motion of the Koopman
operator, and a chaotic Koopman operator may correspond to regular dynamics [9]

There exist many different measures of chaos, criteria and definitions. The most common
postulates are instability of trajectories (e.g. little change in the accuracy of observation may
cause dramatic changes in long-time behaviour) and difficulty in the prediction of trajectories

0305-4470/06/4714559+07$30.00 © 2006 IOP Publishing Ltd Printed in the UK 14559

http://dx.doi.org/10.1088/0305-4470/39/47/003
mailto:oprocha@agh.edu.pl
http://stacks.iop.org/JPhysA/39/14559


14560 P Oprocha

(caused by some kind of mixing present in the system). The list of the most important measures
(and definitions) which appear in the classical mechanics may be found in [2] in addition to
the very interesting discussion on the possibility of quantum chaos. These notions were
usually introduced from the classical mechanics point of view, that is, to analyse properties of
deterministic systems. However, as we will see, there is no trouble with their application to
quantum mechanics. The only problem is that our intuition gained in the classical mechanics
approach may be misleading in this case.

In quantum mechanics, the observables are contained in some Hilbert space of states H
and their dynamics is described by the so-called quantum map, that is, a (usually) unitary
operator UT over some time interval T. This means that for any two observables φ,ψ ∈ H ,
there is no divergence of trajectories:

‖φT − ψT ‖ = ‖UT φ0 − UT ψ0‖ = ‖UT (φ0 − ψ0)‖ = ‖φ0 − ψ0‖, (1)

where ‖·‖ is some norm in H and ψt stands for ψt = ψ(t). In most cases the phase space H
is infinitely dimensional, complete but not compact. It implies that the most common measures
of chaos such as topological entropy or Lyapunov exponents are all zero. Furthermore, there
is no invariant measure for UT which means that it is not possible to apply other tools known
from ergodic theory [1]. Now, it is clear why it is very important to introduce notions of chaos
which will be suitable for that case. Two notions which proved their usefulness in physical
models are the Devaney (or less restrictive Auslander–Yorke) definition [8, 14] and definition
due to Li and Yorke (see [5]). In this paper we will apply another definition of chaos, studied
previously only for the compact case, which additionally may be used as a measure of chaos
[17] (and is not equivalent to earlier mentioned definitions in general). Studies of nonlinear
dynamics are so common in modern science that we usually believe that chaos is a truly
nonlinear phenomenon and it is the case for phase spaces embedded in R

n. However, when
the dimension is infinite, there is lots of space to produce complicated trajectories [15]. Before
we explain how a chaotic phenomenon may arise in a linear harmonic oscillator, we will recall
the fundamentals of this model.

The quantum harmonic oscillator is the quantum mechanical analogue of the classical
harmonic oscillator. It is one of the most important model systems in quantum mechanics
(similar to the importance of a harmonic oscillator in classical mechanics) because of a wide
variety of physical situations which can be reduced to it either exactly or approximately. We
will give only a brief description of the underlying theory. A more extensive introduction to
the topic may be found in books on quantum theory (see [12], [16] or [19]). Evolution of the
quantum harmonic oscillator may be modelled by the (time-dependent) Schrödinger equation

− h̄2

2m

∂2ψ

∂x2
+

mω2

2
x2ψ = ih̄

∂ψ

∂t
(2)

with a wavefunction ψ(x, t), displacement x, mass m, frequency ω and Planck number h̄. For
simplicity, we will go over to nondimensional variables (i.e. we set m = 1

2 , ω = 2 and h̄ = 1).
In this case, (2) takes the form

−∂2ψ

∂x2
+ x2ψ = i

∂ψ

∂t
. (3)

One can show using explicit Hilbert space properties that the system of stationary states of
the harmonic oscillator {ψn} forms an orthonormal basis for H = L2(R). We recall that a
quantum harmonic oscilator may be equivalently described in terms of an annihilation operator
â = 1√

2

(
x + d

dx

)
and its adjoint a† = 1√

2

(
x− d

dx

)
called a creation operator. By basic properties
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of Hermite polynomials, we obtain that

âψn = 1√
2

(
x +

d

dx

)
ψn = √

nψn−1. (4)

All functions from H are obviously solutions of (3); however, they cannot describe the
resolution of a realistic apparatus (e.g. the detector efficiency). Generally speaking, some
solutions from H are too ‘sharp’ to appear in nature. This is why we restrict our attention to
a subspace � of H defined by the following formula (see [3, p 54 and pp 98–100] for a strict
explanation):

� =
{

φ ∈ H : φ =
∞∑

n=0

cnψn,

∞∑
n=0

|cn|2 (n + 1)r < ∞ for all r � 0

}
. (5)

It is known that � is an infinite-dimensional, metrizable, complete and separable topological
vector space, and operator â is continuous (see [6]). We endow � with the standard metric ρ

given by the formula

ρ(φ,ψ) =
∞∑

m=0

1

2m
· pm(φ − ψ)

1 + pm(φ − ψ)
, (6)

where

pm(φ) = pm

( ∞∑
n=0

cnψn

)
=

( ∞∑
n=0

|cn|2 (n + 1)m

)1/2

, m � 0, (7)

is the system of semi-norms defining the topology of �. It easily follows from (6) that � has
diameter bounded by 2.

After we stated the fundamentals of our model, let us recall the notion of distributional
chaos. During the study of self-maps of the interval [10], Li and Yorke stated the definition
of the phenomenon called chaos for the first time. Their idea was to find an uncountable set
D such that for any pair of points x, y ∈ D, the two following conditions hold:

lim inf
n→∞ d(f n(x), f n(y)) = 0 (8)

lim sup
n→∞

d(f n(x), f n(y) > 0, (9)

where d is a metric on a compact space X and f : X → X is continuous. Condition (8) means
that trajectories of these points are arbitrarily close (proximal), but from (9) it means that they
are not asymptotic.

Motivated by this study Schweizer and Smı́tal introduced in [18] the notion of strong chaos,
presently known under the name of distributional chaos. Before we state this definition, we
must introduce some essential notation.

Let f be a continuous self-map on a metric space (X, d), e.g. f = â, X = � and d = ρ.
For any positive integer n, points x, y ∈ X and k ∈ N let

ξ(x, y, t, n) = |{i : d(f i(x), f i(y)) < t 0 � i < n}|,
where |A| denotes the cardinality of set A. We define functions Fxy(t) and F ∗

xy(t) on the real
line by

Fxy(t) = lim inf
n→∞

1

n
ξ(x, y, t, n) (10)

F ∗
xy(t) = lim sup

n→∞
1

n
ξ(x, y, t, n). (11)
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Both functions Fxy and F ∗
xy are nondecreasing. If diamX = s < +∞, then each of these

functions may be naturally viewed as a probability distribution function (it is the case for our
set of observables �), satisfying Fxy(t) = F ∗

xy(t) = 0 for t < 0 and Fxy(t) = F ∗
xy(t) = 1 for

t > s. Now, we are ready to state our central definition.
A pair of points x, y ∈ X is called distributionally chaotic if Fxy(s) = 0 for some s > 0

and F ∗
xy(t) = 1 for all t > 0. A dynamical system (f,X) is distributionally chaotic if there

exists an uncountable set D (called a scrambled set) such that any pair of distinct points of D
is distributionally chaotic. If additionally there exists a parameter s > 0, which is good for
all pairs of distinct points x, y of D (i.e. Fxy(s) = 0), then we say that distributional chaos is
uniform.

Observe that uniform distributional chaos is a very strong chaotic definition. If a system
exhibits such kinds of chaos, then there exists constant δ > 0 such that for any two points
of the scrambled set, during almost every time step, their iterates are arbitrarily close when
looking from one time perspective and almost every iterate of these points is separated by δ

when the time perspective is changed.
Distributional chaos implies chaos in the sense of Li and Yorke, as it requires more

complicated statistical dependence between orbits than the existence of points which are
proximal but not asymptotic. Additionally, distributional chaos (excluding some special
cases) is not equivalent to any other kinds of chaos mentioned earlier, e.g. it is possible to
construct a dynamical system with zero topological entropy which is distributionally chaotic
[11] and systems with positive entropy which do not exhibit distributional chaos [20].

Before we prove that distributional chaos is present in our model, let us say a word about
the state of art in the linear model context. The article of Godefroy and Shapiro [7] is one of
the first results which shows that Devaney chaos is possible in linear systems (see [15] for a
discussion). Gulisashvili and MacCluer applied in [8] the method of Godefroy and Shapiro
to prove that the annihilation operator â is chaotic in this sense. (Their approach is strongly
motivated by a functional analysis.) Strictly speaking, they show that operator â fulfils the
hypecyclicity criterion and has periodic points dense. The recent results show that operator
â exhibits even a stronger version of Devaney chaos, as operators fulfilling the hypercyclicity
criterion are not only transitive but also exhibit (topological) mixing properties [4]. Duan et al
proved in [5] that the map â is also chaotic in the sense of Li and Yorke. As we will see, these
results do not fully reveal a complicated behaviour of the operator â. Namely, it is possible
to construct a scrambled set for â and to show that this set is dense and distributional chaos is
uniform.

Density of the scrambled set makes us unable to use tools known from a compact case;
however we may still follow similar ideas. During our construction, we will combine methods
from [5] and [13]. The construction we perform is somehow technical in nature; however, it
may be effectively applied to similar models which arise naturally in quantum physics.

At the beginning, we have to construct some important sequence of times inductively.
Let S1

1 = 2, let us set any l � 1 and let us assume that Si
j is defined for all 0 < i � l and

j = 1, . . . , i. Let

Sl+1
1 = 2l

l∑
p=1

p∑
q=1

Sp
q . (12)

If Sl+1
k is defined for some 1 � k � l, we define Sl+1

k+1 by the formula

Sl+1
k+1 = 2l


 l∑

p=1

p∑
q=1

Sp
q +

k∑
r=1

Sl+1
r


 . (13)
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Thus, Sl
k is defined for any l � 1 and 1 � k � l. We also use the symbol Ml+1

k to denote the
sum of sequence S

p
q , that is,

Ml+1
k =

l∑
p=1

p∑
q=1

Sp
q +

k∑
r=1

Sl+1
r . (14)

At this point, we are ready to start the construction of the scrambled set D ⊂ �. Let J

denote an open interval J = (α, β), where α, β are any constants fulfilling 0 < α < β < 1.
Let us fix any θ ∈ J . We define the family φθ = ∑∞

n=0 cθ
nψn ∈ �, where cθ

0 = 0 and

cθ
n =




1√
n!

if n ∈ [
Ml

k,M
l
k+1

)
and θ � k + 1

l
, 1 � k < l, l � 1

1√
n!

if n ∈ [
Ml

l ,M
l+1
1

)
and θ � 1

l + 1
0 otherwise.

(15)

Let D = {φθ : θ ∈ J }, let us set any ε > 0 and let θ1, θ2 ∈ J . There exist positive
integers K,ω,N such that

∞∑
i=K+1

1

2i
<

ε

2
,

∞∑
m=ω

(m + 1)K

2m
<

(ε

6

)2
,

N

N + 1
> β, 2N > ω. (16)

For any n > N , let us define in = Mn+1
n , tn = Mn+1

n+1 . By (15) we obtain that c
θ1
j = 0 = c

θ2
j for

in � j < tn because θ1 < 1 and θ2 < 1 and (16) implies that in < tn − ω. Let us take any
integer s such that in � s < tn − ω. Then,

ρ(âs(φθ1), âs(φθ2)) � ε

2
+

K∑
m=0

1

2m
· pm(âs(φθ1 − φθ2))

1 + pm(âs(φθ1 − φθ2))
(17)

and additionally, for r < K , the following inequalities hold:

pr(â
s(φθ1 − φθ2)) �

( ∞∑
m=ω

(m + 1)K

m!

) 1
2

�
( ∞∑

m=ω

(m + 1)K

2m

) 1
2

<
ε

6
. (18)

Combining (17) and (18), we obtain

ρ(âs(φθ1), âs(φθ2)) � ε

2
+

K∑
m=0

ε

6 · 2m
= ε

3
+

ε

2
< ε. (19)

Then by the choice of s and (19), we have

1

tn
ξ(φθ1 , φθ2 , ε, tn) � Sn+1

n+1 − ω

Mn+1
n + Sn+1

n+1

� 2n+1Mn+1
n − ω

Mn+1
n + 2n+1Mn+1

n

−→ 1. (20)

Following (20) we see that F ∗
φθ1 φθ2

(ε) = 1 for any distinct φθ1 , φθ2 ∈ D and ε > 0.
To finish the proof that D is the scrambled set (and distributional chaos is uniform) for

â, it is enough to show that F ∗
φθ1 φθ2

(
1

16

) = 0. Let us set an integer N which is large enough

to have |θ1 − θ2| > 4
N

, |1 − θ2| > 4
N

and assume that θ2 > θ1. For any n > N there exists
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1 < k < n such that θ1 < k
n+1 < θ2. Let ĩn = Mn+1

k , t̃n = Mn+1
k+1 and let us set any j such that

ĩn � j < t̃n. In this setting, c
θ1
j = 0 and c

θ2
j = 1√

j !
, which yields that

p1(â
j (φθ1 − φθ2)) �

(∣∣cθ1
j − c

θ2
j

∣∣2 · j !
) 1

2 = 1 (21)

and from the other side

p1(â
j (φθ1 − φθ2)) �

( ∞∑
m=0

m + 1

m!

) 1
2

�
(

1 +
∞∑

m=1

1

2m−1

) 1
2

� 3. (22)

By virtue of (21) and (22), the following inequality holds:

ρ(âj (φθ1), âj (φθ2)) � 1

2
· p1(â

j (φθ1 − φθ2))

1 + p1(âj (φθ1 − φθ2))
� 1

8
>

1

16
, (23)

and as a result

1

t̃n
ξ

(
φθ1 , φθ2 ,

1

16
, t̃n

)
� ĩn

t̃n
= Mn+1

k

Mn+1
k + Sn+1

k+1

= 1

2n+1 + 1
−→ 0. (24)

This proves that D is the scrambled set for â, and distributional chaos is uniform. Furthermore,
we may choose D to be dense because � is separable, and we may include an arbitrarily large
(but finite) number of scaled stationary states in our wave packet without interrupting long-
time behaviour of the annihilation operator â. Additionally, our approach may be used to
measure chaos. In [17] the following measure was introduced:

µp(f ) = sup
x,y∈X

1

diamX

∫ ∞

0
F ∗

xy(t) − Fxy(t) dt. (25)

It is a hard task to calculate this supremum; however, positiveness of µp(f ) may be used as a
preliminary test for chaos. This approach is more nice than that of topological entropy where
(usually easier to calculate) upper bound does not help to answer whether the system is chaotic
or not. In our case,

µp(â) � sup
φ,ψ∈D

1

2

∫ 1
16

0
F ∗

φψ(t) − Fφψ(t) dt = 1

16
, (26)

which once again ensures us about the chaocity of the model. It would be interesting to know
the exact value of µp(â) or to compute this quantity in other physical models (e.g. given by
the Schrödinger equation).
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